Common Use Cases
This guide demonstrates real-world applications of the Athena AI Smart Money API with practical examples for different trading strategies and use cases.
Table of Contents
- Day Trading & Scalping
- Swing Trading & Position Management
- Whale Tracking & Institutional Flow
- Contrarian Reversals
- Risk Management
- Portfolio Construction
- Market Research & Analysis
- Automated Trading Bots
Day Trading & Scalping
Use Case: Find High-Momentum Intraday Opportunities
Goal: Identify tokens with strong smart money momentum over the past hour for quick scalping trades.
Query:
curl -H "Authorization: Bearer YOUR_API_KEY" \
"https://api.0xathena.ai/smart-money/token-stats?position_type=LONG&include_changes=true&change_window=1h&sort_by=money_flow&sort_order=desc&limit=5&include_confidence=true&signal_strength=strong"
What This Does:
position_type=LONG: Focus on bullish setupsinclude_changes=true&change_window=1h: Show 1-hour momentumsort_by=money_flow&sort_order=desc: Biggest capital inflows firstinclude_confidence=true&signal_strength=strong: Only high-conviction signalslimit=5: Top 5 opportunities
Sample Response:
{
"data": [
{
"token": "SOL",
"total_positions": 15,
"position_percentage": "80% LONG",
"money_percentage": "92% LONG",
"position": "LONG",
"money_flow": "+$8.2M",
"position_change": "+12%",
"confidence": 88,
"signal_strength": "strong",
"change_window": "1h"
}
]
}
How to Trade This:
- SOL shows +$8.2M capital inflow in 1 hour (strong institutional buying)
- 88 confidence score indicates high conviction
- 80% of positions are LONG (strong consensus)
- Enter LONG position with tight stop-loss for scalping
- Monitor for reversal signals every 30-60 minutes
Pro Tip: For day trading, combine smart money signals with technical support/resistance levels for optimal entries.
Swing Trading & Position Management
Use Case: Find Multi-Day Swing Trade Setups
Goal: Identify tokens where smart money is holding positions for several days, indicating conviction in a sustained trend.
Query:
curl -H "Authorization: Bearer YOUR_API_KEY" \
"https://api.0xathena.ai/smart-money/token-stats?min_positions=10&include_hold_times=true&include_confidence=true&signal_strength=strong&position_type=LONG&limit=10"
What This Does:
min_positions=10: High-quality signals with many tradersinclude_hold_times=true: See how long positions are heldsignal_strength=strong: Only high-conviction playsposition_type=LONG: Bullish setups
Sample Response:
{
"data": [
{
"token": "ETH",
"total_positions": 24,
"position_percentage": "71% LONG",
"money_percentage": "85% LONG",
"position": "LONG",
"signal_duration": "medium-term",
"avg_hold_hours": 122.5,
"median_hold_hours": 96.3,
"confidence": 82,
"signal_strength": "strong"
}
]
}
How to Trade This:
- ETH has 24 positions with 71% LONG consensus
- Medium-term signal duration (96h median = 4 days)
- Smart money is holding for days, not hours (conviction)
- Enter LONG position with 3-7 day target
- Use wider stop-loss suitable for swing trading
Whale Tracking & Institutional Flow
Use Case: Track Million-Dollar+ Whale Positions
Goal: Monitor only the largest institutional positions to see where "big money" is moving.
Query:
curl -H "Authorization: Bearer YOUR_API_KEY" \
"https://api.0xathena.ai/smart-money/token-stats?min_notional_usd=1000000&include_changes=true&change_window=24h&sort_by=money_flow&sort_order=desc&limit=10"
What This Does:
min_notional_usd=1000000: Only positions worth $1M+ (whale-sized)include_changes=true&change_window=24h: 24-hour whale activitysort_by=money_flow: Show where most whale capital is flowing
Sample Response:
{
"data": [
{
"token": "BTC",
"total_positions": 8,
"position_percentage": "75% LONG",
"money_percentage": "94% LONG",
"position": "LONG",
"money_flow": "+$24.8M",
"position_change": "+8%",
"change_window": "24h"
}
]
}
How to Trade This:
- BTC has 8 whale positions (all $1M+ each)
- 94% of whale capital is LONG (extreme conviction)
- +$24.8M net whale buying in 24 hours
- Follow whale flow: Enter LONG position
- Whales rarely wrong on multi-day timeframes
Why This Works:
- Whale positions move markets
- $1M+ positions held by professionals, not retail
- Institutional flow is most predictive metric
Important: Whale positions typically have longer timeframes than retail. Don't expect immediate price action - whales think in days and weeks, not hours.
Contrarian Reversals
Use Case: Find Potential Reversal Opportunities
Goal: Identify tokens where smart money positioning is shifting dramatically, suggesting a potential trend reversal.
Query:
curl -H "Authorization: Bearer YOUR_API_KEY" \
"https://api.0xathena.ai/smart-money/token-stats?position_type=SHORT&min_positions=8&include_confidence=true&signal_strength=strong&include_changes=true&change_window=24h&sort_by=position_change&sort_order=asc&limit=10"
What This Does:
position_type=SHORT: Currently bearish positioningsort_by=position_change&sort_order=asc: Biggest decreases (reversal signal)signal_strength=strong: Only high-conviction signals- Note:
signal_strengthrequiresinclude_confidence=true - Note:
sort_by=position_changerequiresinclude_changes=true
Sample Response:
{
"data": [
{
"token": "AVAX",
"total_positions": 12,
"position_percentage": "58% SHORT",
"money_percentage": "62% SHORT",
"position": "SHORT",
"position_change": "-18%",
"confidence": 76,
"signal_strength": "strong",
"change_window": "24h"
}
]
}
How to Trade This:
- AVAX currently 58% SHORT (bearish)
- BUT position change is -18% (large decrease in SHORT consensus)
- This means smart money is closing SHORTs or opening LONGs
- Potential reversal from bearish to bullish
- Enter LONG position betting on reversal continuation
Why This Works:
- Smart money often leads reversals before retail
- Large position changes indicate conviction shift
- Contrarian to current positioning but aligned with emerging flow
Risk Management
Use Case: Avoid High-Volatility, Low-Confidence Plays
Goal: Filter out risky, uncertain positions and focus only on stable, high-confidence opportunities.
Query:
curl -H "Authorization: Bearer YOUR_API_KEY" \
"https://api.0xathena.ai/smart-money/token-stats?min_positions=10&include_confidence=true&signal_strength=strong&include_volatility=true&sort_by=volatility&sort_order=asc&limit=10"
What This Does:
min_positions=10: Require many positions (quality filter)signal_strength=strong: Only high-confidence signalsinclude_volatility=true&sort_by=volatility&sort_order=asc: Lowest volatility first- Focus on stable, predictable positioning
Sample Response:
{
"data": [
{
"token": "BTC",
"total_positions": 18,
"position_percentage": "67% LONG",
"money_percentage": "89% LONG",
"position": "LONG",
"confidence": 91,
"signal_strength": "strong",
"volatility": "low",
"volatility_score": 0.32
}
]
}
How to Trade This:
- BTC has 18 positions with 91 confidence (very high quality)
- Low volatility (0.32) means stable positioning
- Smart money is aligned and not flip-flopping
- Safe, conservative LONG setup with reduced risk
- Ideal for larger position sizes or lower risk tolerance
Risk Management Rules:
- Never trade:
volatility: "very-high"orconfidence < 50 - Reduce size:
volatility: "high"orconfidence 50-69 - Normal size:
volatility: "medium"orconfidence 70-79 - Larger size:
volatility: "low"orconfidence 80+
Portfolio Construction
Use Case: Build a Balanced Smart Money Portfolio
Goal: Create a portfolio allocation based on top traders' collective positioning across multiple tokens.
Query 1: Get Top Traders Portfolio
curl -H "Authorization: Bearer YOUR_API_KEY" \
"https://api.0xathena.ai/smart-money/top-traders-portfolio?limit=10"
Sample Response:
{
"data": [
{
"token": "BTC",
"allocation_percentage": "28.5%",
"total_positions": 4,
"avg_position_size_usd": 2450000,
"position_direction": "LONG"
},
{
"token": "ETH",
"allocation_percentage": "22.3%",
"total_positions": 3,
"avg_position_size_usd": 1820000,
"position_direction": "LONG"
},
{
"token": "SOL",
"allocation_percentage": "15.8%",
"total_positions": 5,
"avg_position_size_usd": 980000,
"position_direction": "LONG"
}
]
}
How to Build Portfolio:
- Top 5 traders allocate 28.5% to BTC, 22.3% to ETH, 15.8% to SOL
- Mirror their portfolio: If you have $10,000 to invest:
- BTC: $2,850 (28.5%)
- ETH: $2,230 (22.3%)
- SOL: $1,580 (15.8%)
- Continue for remaining tokens
- Rebalance weekly or when allocations shift significantly
Query 2: Validate with Confidence Scores
curl -H "Authorization: Bearer YOUR_API_KEY" \
"https://api.0xathena.ai/smart-money/token-stats?pinned=BTC,ETH,SOL&include_confidence=true&signal_strength=strong&limit=10"
This confirms each allocation has strong smart money conviction.
Market Research & Analysis
Use Case: Understand Market-Wide Sentiment
Goal: Get a comprehensive view of smart money positioning across all tracked tokens.
Query:
curl -H "Authorization: Bearer YOUR_API_KEY" \
"https://api.0xathena.ai/smart-money/token-stats?min_positions=5&include_confidence=true&include_changes=true&change_window=24h&include_trends=true&limit=50"
What This Does:
min_positions=5: Quality filterinclude_confidence=true: See conviction levelsinclude_changes=true&change_window=24h: Daily shiftsinclude_trends=true: Identify trend patternslimit=50: Comprehensive market view
Sample Response:
{
"data": [
{
"token": "BTC",
"position": "LONG",
"confidence": 87,
"position_change": "+5%",
"trend_direction": "bullish",
"trend_strength": 0.78
},
{
"token": "ETH",
"position": "LONG",
"confidence": 82,
"position_change": "+3%",
"trend_direction": "bullish",
"trend_strength": 0.71
},
{
"token": "DOGE",
"position": "SHORT",
"confidence": 65,
"position_change": "-8%",
"trend_direction": "bearish",
"trend_strength": 0.54
}
],
"meta": {
"total_count": 48,
"returned_count": 50
}
}
Market Analysis:
- Count LONG vs SHORT positions: 32 LONG, 16 SHORT = 67% bullish market
- Average confidence: 74 = moderate-to-high conviction
- Trend directions: Mostly bullish, few bearish outliers
- Position changes: +3.2% average = accumulation phase
- Conclusion: Smart money is bullish on crypto broadly
Use for:
- Market timing (enter when smart money turns bullish)
- Sector rotation (identify which tokens getting attention)
- Risk-on vs risk-off (LONG dominance = risk-on)
- Portfolio hedging (SHORT positions as hedge ideas)
Automated Trading Bots
Use Case: Build a Trading Bot with Smart Money Signals
Goal: Automate trade entries based on smart money positioning changes.
Example Strategy: Momentum Following Bot
Step 1: Poll API Every 15 Minutes
const POLL_INTERVAL = 15 * 60 * 1000; // 15 minutes
setInterval(async () => {
const response = await fetch(
'https://api.0xathena.ai/smart-money/token-stats?position_type=LONG&include_changes=true&change_window=1h&sort_by=money_flow&sort_order=desc&limit=5&include_confidence=true&signal_strength=strong',
{
headers: {
Authorization: 'Bearer YOUR_API_KEY',
},
}
);
const data = await response.json();
processSignals(data);
}, POLL_INTERVAL);
Step 2: Define Entry Rules
function processSignals(data) {
data.data.forEach((token) => {
// Entry conditions
const shouldEnter =
token.position === 'LONG' &&
token.confidence >= 80 &&
parseFloat(token.money_flow) > 5000000 && // $5M+ inflow
parseFloat(token.position_change) > 10; // 10%+ increase
if (shouldEnter && !hasPosition(token.token)) {
enterLongPosition(token.token, calculatePositionSize(token));
}
});
}
Step 3: Define Exit Rules
function checkExits() {
activePositions.forEach(async (position) => {
const response = await fetch(
`https://api.0xathena.ai/smart-money/token-stats?token=${position.token}&include_changes=true&change_window=1h`,
{
headers: { Authorization: 'Bearer YOUR_API_KEY' },
}
);
const data = await response.json();
const tokenData = data.data[0];
// Exit conditions
const shouldExit =
tokenData.position === 'SHORT' || // Smart money flipped
tokenData.confidence < 50 || // Low confidence
parseFloat(tokenData.money_flow) < -3000000; // $3M+ outflow
if (shouldExit) {
closeLongPosition(position.token);
}
});
}
Step 4: Position Sizing Based on Confidence
function calculatePositionSize(token) {
const baseSize = 1000; // $1000 base position
if (token.confidence >= 90) return baseSize * 2.0; // 2x for very high confidence
if (token.confidence >= 80) return baseSize * 1.5; // 1.5x for high confidence
if (token.confidence >= 70) return baseSize * 1.0; // 1x for good confidence
return baseSize * 0.5; // 0.5x for moderate confidence
}
Bot Performance Considerations:
- Use cached data (15-min cache) to avoid rate limits
- Monitor rate limit headers:
X-RateLimit-Remaining - Implement exponential backoff on 429 errors
- Log all signals and trades for backtesting
- Start with paper trading before live capital
Advanced Combinations
Use Case: Multi-Factor Analysis
Goal: Combine multiple signals for highest-conviction opportunities.
Query:
curl -H "Authorization: Bearer YOUR_API_KEY" \
"https://api.0xathena.ai/smart-money/token-stats?min_positions=10&min_notional_usd=500000&include_confidence=true&signal_strength=strong&include_volatility=true&include_changes=true&change_window=24h&include_trends=true&include_hold_times=true&limit=5"
What This Does:
min_positions=10: Many traders (quality)min_notional_usd=500000: Large positions (institutional)signal_strength=strong: High confidence (conviction)include_volatility=true: Check stability (risk)include_changes=true: See momentum (timing)include_trends=true: Identify trend (direction)include_hold_times=true: Understand duration (strategy)
Sample Response:
{
"data": [
{
"token": "BTC",
"total_positions": 18,
"position_percentage": "72% LONG",
"money_percentage": "91% LONG",
"position": "LONG",
"confidence": 89,
"signal_strength": "strong",
"volatility": "low",
"volatility_score": 0.28,
"position_change": "+8%",
"money_flow": "+$18.5M",
"trend_direction": "bullish",
"trend_strength": 0.82,
"signal_duration": "medium-term",
"median_hold_hours": 108.2
}
]
}
Perfect Setup Checklist:
- ✅ 18 positions (high quality)
- ✅ 89 confidence (very high conviction)
- ✅ Low volatility (stable, predictable)
- ✅ +$18.5M money flow (strong buying)
- ✅ Bullish trend with 0.82 strength (clear direction)
- ✅ Medium-term duration (multi-day hold)
This is a "dream setup" - all factors aligned for high probability trade.
Integration Examples
JavaScript/Node.js Application
import fetch from 'node-fetch';
class SmartMoneyAPI {
constructor(apiKey) {
this.apiKey = apiKey;
this.baseUrl = 'https://api.0xathena.ai/smart-money';
}
async getTokenStats(params = {}) {
const queryString = new URLSearchParams(params).toString();
const url = `${this.baseUrl}/token-stats?${queryString}`;
const response = await fetch(url, {
headers: {
Authorization: `Bearer ${this.apiKey}`,
},
});
if (!response.ok) {
throw new Error(`API Error: ${response.status}`);
}
return await response.json();
}
async getWhalePositions() {
return this.getTokenStats({
min_notional_usd: 1000000,
include_changes: true,
change_window: '24h',
sort_by: 'money_flow',
sort_order: 'desc',
limit: 10,
});
}
async getHighConfidenceLongs() {
return this.getTokenStats({
position_type: 'LONG',
include_confidence: true,
signal_strength: 'strong',
min_positions: 10,
limit: 5,
});
}
}
// Usage
const api = new SmartMoneyAPI(process.env.ATHENA_API_KEY);
const whales = await api.getWhalePositions();
console.log('Whale positions:', whales.data);
const highConviction = await api.getHighConfidenceLongs();
console.log('High conviction longs:', highConviction.data);
Python Trading Bot
import requests
import time
import os
class SmartMoneyTrader:
def __init__(self, api_key):
self.api_key = api_key
self.base_url = 'https://api.0xathena.ai/smart-money'
self.headers = {'Authorization': f'Bearer {api_key}'}
def get_token_stats(self, **params):
url = f'{self.base_url}/token-stats'
response = requests.get(url, headers=self.headers, params=params)
response.raise_for_status()
return response.json()
def find_momentum_plays(self):
return self.get_token_stats(
position_type='LONG',
include_changes=True,
change_window='1h',
sort_by='money_flow',
sort_order='desc',
include_confidence=True,
signal_strength='strong',
limit=5
)
def run_bot(self, poll_interval=900): # 15 minutes
while True:
try:
signals = self.find_momentum_plays()
for token in signals['data']:
if self.should_enter(token):
self.enter_position(token)
self.check_exits()
except Exception as e:
print(f'Error: {e}')
time.sleep(poll_interval)
def should_enter(self, token):
return (
token['confidence'] >= 80 and
float(token['money_flow'].replace('$', '').replace('M', '')) > 5 and
float(token['position_change'].replace('%', '')) > 10
)
def enter_position(self, token):
print(f'Entering LONG {token["token"]} - Confidence: {token["confidence"]}')
# Add your exchange API integration here
def check_exits(self):
# Check active positions and exit if conditions met
pass
# Usage
trader = SmartMoneyTrader(os.getenv('ATHENA_API_KEY'))
trader.run_bot()
Best Practices
1. Always Validate Signals
Don't trade blindly on API data. Combine smart money signals with:
- Technical analysis (support/resistance)
- Fundamental analysis (project quality)
- Market conditions (overall trend)
- Your own research
2. Use Appropriate Position Sizing
- High confidence (80+): Normal or larger size
- Moderate confidence (60-79): Reduced size
- Low confidence (<60): Minimal size or avoid
3. Respect Rate Limits
- Use cached data when possible
- Implement exponential backoff on errors
- Monitor
X-RateLimit-Remainingheader - Don't poll faster than necessary
4. Combine Multiple Metrics
Single metrics can be misleading. Always look at:
- Position percentage AND money percentage
- Confidence score AND position count
- Current positioning AND recent changes
- Volatility AND trend strength
5. Monitor Performance
- Track win rate for different query combinations
- Measure profit/loss per signal type
- Optimize parameters based on results
- Backtest strategies before live trading
Next Steps
Explore the following guides in the sidebar:
- Core Concepts - Understand the metrics in depth
- Parameter Chaining Guide - Master advanced queries
- API Reference - Complete endpoint documentation (see Reference section)
- Authentication - Get your API key and set up
Need Help?
- Email: support@0xathena.ai
- GitHub: Report Issues
- Community: Join our Discord for trading discussions
Disclaimer: The information provided by Athena AI is for informational purposes only and should not be considered financial advice. Cryptocurrency investments carry significant risk. Always conduct your own research and consult with qualified financial advisors before making investment decisions. Athena AI is not responsible for any losses incurred from using this information.